

DR. CARLOS S. LANTING COLLEGE

Basic Education Department

16, Tandang Sora Ave., Sangandaan, Novaliches, Quezon City Tel. No. (02) 938-7782 / (02) 938-7789 Telefax No. (02) 939-7229 Email: <u>info@lantingcollege.edu.ph</u> Website: <u>www.lantingcollege.edu.ph</u> www.lantingcollege.edu.ph

FLEXIBLE INSTRUCTION DELIVERY PLAN (FIDP)

Page 1 of 11

Grade:	12	Semester:	Second (Q1 & Q2)
Applied Subject Title:	GENERAL PHYSCIS 1	No. of Hours/Semester:	40 hours
Applied Subject Description:	Mechanics of Particles, rigid bodies, and fluids; waves; and heat and thermodynamics using the methods and concepts of algebra, geometry, trigonometry, graphical analysis, and basic calculus.	Prerequisites (If needed):	Basic Calculus

Culminating Performance Standard:

What to Teach? Why Teach?							Why Assess	?	What to Teach?		
			Lea	rning Cor	npetencies		Highest Thinking Skill	to Assess	Highest Enabling developing the Hig to As	Strategy to Use in hest Thinking Skill ssess	
Content	Content Standards	Most Essential Topics	Complete	K U D	Most Essential	K U D	RBT Level Flexible Assessment Activities (FAA) Performance Checks	Performance Checks	Enabling General Strategy	Flexible Learning Strategies (FLS)	

	1						· · · · ·			1
1. Units	1. Units	1. The effect of	Solve measurement	K	Solve measurement	K	Understanding	Supplementary	Online distance	Presentation
2. Physical	2. Physical	instruments on	problems involving	U	problems involving	U		problem set as	Learning (ODL)	using and/or one
Quantities	Quantities	measurements	conversion of units,		conversion of units,			worksheets/course	(Asynchronous and	note
Measurement	3. Measurement	3. Sources and	expression of measurements		expression of measurements			works	Synchronous)	
 Graphical 	4. Graphical	types of error	in scientific notation		in scientific notation					Entry/Exit Tickets
Presentation	Presentation		Differentiate accuracy from	Κ			Understanding	Conceptual		(Conceptual
5. Linear Fitting of	5. Linear Fitting of		precision	U			Applying	Laboratory (Home		questions posted
Data	Data		Differentiate random errors	Κ	Differentiate random errors	Κ	Understanding	Edition): Video		in Google
			from systematic errors	U	from systematic errors	U		Orbital studies:		classroom)
			Estimate errors from multiple	U						
			measurements of a physical					Standards/Basis		Quiz as
			quantity using variance					for Grading to Use.		understanding
			Differentiate vector and	Κ	Differentiate vector and	Κ		(i) Numerical		check
			scalar quantities		scalar quantities			scores for the		
Vectors	1. Vectors and	1. Vectors and	Perform addition of vectors	U	Perform addition of vectors	U		quizzes, test and	Online distance	Interactive
	vector addition	vector addition		D		D		problem sets (ii)	Learning (ODL)	Simulations:
	2. Components of	2. Components of	Rewrite a vector in	U	Rewrite a vector in	U		rubric for the	(Asynchronous and	PHET Colorado
	vectors	vectors	component form	D	component form	D		application	Synchronous)	https://phet.colora
								problem set		<u>do.edu/</u>
Kinematics: Motion	1. Position, time.	1. Position, time.	Convert a verbal description	U	Convert a verbal description	U			Online distance	and/or
Along a Straight	distance.	distance.	of a physical situation		of a physical situation				Learning (ODL)	Physics
Line	displacement.	displacement.	involving uniform		involving uniform					Classroom
	allepiece mont,	and proceeding (I					1	1

16, Tandang Sora Ave., Sangandaan, Novaliches, Quezon City Tel. No. (02) 938-7782 / (02) 938-7789 Telefax No. (02) 939-7229 Email: <u>info@lantingcollege.edu.ph</u> Website: <u>www.lantingcollege.edu.ph</u> www.lantingcollege.edu.ph

What to	Teach?		Why Teach	Why Teach?				?	What to Teach?	
			Learni	ng Co	ompetencies		Highest Thinking Skill	to Assess	Highest Enabling developing the Hig to As	Strategy to Use in Jhest Thinking Skill ssess
Content	Content Standards	Most Essential Topics	Complete	K U D	Most Essential	K U D	RBT Level Flexible Assessment Activities (FAA) Performance Checks	Performance Checks	Enabling General Strategy	Flexible Learning Strategies (FLS)

· · · · · · · · · · · · · · · · · · ·								/ A I ·	
	speed, average	speed, average	acceleration in one		acceleration in one			(Asynchronous and	https://www.physi
	velocity,	velocity,	dimension into a		dimension into a			Synchronous)	csclassroom.com/
	instantaneous	instantaneous	mathematical description		mathematical description				Physics-
	velocity	velocity	Interpret displacement	U	Interpret displacement	U			Interactives/Static
			and velocity, respectively, as		and velocity, respectively, as				-Electricity
			areas under velocity vs. time		areas under velocity vs. time				
			and acceleration vs. time		and acceleration vs. time				
			curves		curves				
			Interpret velocity and	U	Interpret velocity and	U	Analyzing		
			acceleration, respectively, as		acceleration, respectively, as		, ,		
			slopes of position vs. time		slopes of position vs. time				
			and velocity vs. time curves		and velocity vs. time curves				
			Construct velocity vs. time	D	Construct velocity vs. time	D			
			and acceleration vs. time		and acceleration vs. time				
			graphs, respectively.		graphs, respectively.				
			corresponding to a given		corresponding to a given				
			position vs_time-graph and		position vs. time-graph and				
			velocity vs. time graph and		velocity vs. time graph and				
			vice verse		vice verse				
			Solvo for unknown quantition	П	Solvo for unknown quantition	П	Applyzing		
			solve for unknown quantities	U	solve for unknown quantities	D	Analyzing		
			dimensional uniformly		dimensional uniformly				
					dimensional uniformity				
				<u> </u>		_	Line de contra e Prese		
			Solve problems involving	U	Solve problems involving	D	Understanding		
			one-dimensional motion with		one-dimensional motion with		Applying		
			constant acceleration in		constant acceleration in		Analyzing		
			contexts such as, but not		contexts such as, but not				
			limited to, the "tail-gating		limited to, the "tail-gating				

16, Tandang Sora Ave., Sangandaan, Novaliches, Quezon City Tel. No. (02) 938-7782 / (02) 938-7789 Telefax No. (02) 939-7229 Email: info@lantingcollege.edu.ph Website: www.lantingcollege.edu.ph www.lantingcollege.edu.ph

What to	Teach?		Why Teach	Why Teach?				?	What to Teach?		
			Learnii	ng Co	ompetencies		Highest Thinking Skill	to Assess	Highest Enabling developing the Hig to As	Strategy to Use in hest Thinking Skill sess	
Content	Content Standards	Most Essential Topics	Complete	K U D	Most Essential	K U D	RBT Level Flexible Assessment Activities (FAA) Performance Checks	Performance Checks	Enabling General Strategy	Flexible Learning Strategies (FLS)	

			phenomenon", pursuit, rocket launch, and free-fall problems		phenomenon", pursuit, rocket launch, and free-fall problems					
Kinematics: Motion in 2- Dimensions and 3-Dimensions	1. Position, distance displacement,	1. Position, distance displacement,	Describe motion using the concept of relative velocities in 1D and 2D	К	Describe motion using the concept of relative velocities in 1D and 2D	K	Understanding Applying Analyzing	_	Online distance Learning (ODL) (Asynchronous and	
	speed, average velocity, instantaneous velocity, average acceleration, and	speed, average velocity, instantaneous velocity, average acceleration, and	Deduce the consequences of the independence of vertical and horizontal components of projectile motion	U	Deduce the consequences of the independence of vertical and horizontal components of projectile motion	U	Understanding		Synchronous)	
	instantaneous acceleration in 2- and 3-	instantaneous acceleration in 2- and 3- dimensions	Calculate range, time of flight, and maximum heights of projectiles	U	Calculate range, time of flight, and maximum heights of projectiles	U				
	dimensions 2. Projectile motion 3. Circular motion	2. Projectile motion	Solve problems involving two dimensional motion in contexts such as, but not limited to ledge jumping, movie stunts, basketball, safe locations during firework displays, and Ferris wheels	D	Solve problems involving two dimensional motion in contexts such as, but not limited to ledge jumping, movie stunts, basketball, safe locations during firework displays, and Ferris wheels	D	Understanding Applying			
Newton's Laws of Motion and	1. Newton's Law's of Motion	1. Newton's Law's of Motion	Identify action-reaction pairs	K	Identify action-reaction pairs	К	Understanding Applying		Online distance Learning (ODL)	
Applications	2. Inertial	2. Inertial	Draw free-body diagrams	Κ	Draw free-body diagrams	Κ			(Asynchronous and	
	Reference Frames	Reference Frames 3. Action at a distance forces	Apply Newton's 1st law to obtain quantitative and qualitative conclusions about	U	Apply Newton's 1st law to obtain quantitative and qualitative conclusions about	U	Understanding Applying Analyzing		Synchronous)	

on conveyor belts, force

needed to move stalled

safe driving speeds on

banked curved roads

product of vectors

1. Dot or Scalar

Product

1. Dot or Scalar

Product

Work, Energy, and

Energy Conservation

vehicles, determination of

Calculate the dot or scalar

Basic Education Department

16, Tandang Sora Ave., Sangandaan, Novaliches, Quezon City Tel. No. (02) 938-7782 / (02) 938-7789 Telefax No. (02) 939-7229 Email: info@lantingcollege.edu.ph Website: www.lantingcollege.edu.ph www.lantingcollege.edu.ph

FLEXIBLE INSTRUCTION DELIVERY PLAN (FIDP)

What to	Teach?		Why Teach	?			Why Assess	?	What to	Teach?
			Learnir	ng Co	ompetencies		Highest Thinking Skil	I to Assess	Highest Enabling developing the Hig to As	Strategy to Use in hest Thinking Skill ssess
Content	Content Standards	Most Essential Topics	Complete	к U	Most Essential	к U	RBT Level Flexible Assessment Activities (FAA)	Performance	Enabling General	Flexible Learning
				D		D	Performance Checks	Cliecks	Strategy	Strategies (FLS)
	3. Action at a distance forces 5. Types of contact forces: tension, normal force, kinetic and static friction, fluid Action-Reaction Pairs 7. Free-Body Diagrams 8. Applications of Newton's Laws to single-body and multibody dynamics	5. Types of contact forces: tension, normal force, kinetic and static friction, fluid Action-Reaction Pairs 7. Free-Body Diagrams 8. Applications of Newton's Laws to single-body and multibody dynamics	the contact and noncontact forces acting on a body in equilibrium (1 lecture) Differentiate the properties of static friction and kinetic friction Apply Newton's 2nd law and kinematics to obtain quantitative and qualitative conclusions about the velocity and acceleration of one or more bodies, and the contact and noncontact forces acting on one or more bodies	K	the contact and noncontact forces acting on a body in equilibrium (1 lecture) Differentiate the properties of static friction and kinetic friction Apply Newton's 2nd law and kinematics to obtain quantitative and qualitative conclusions about the velocity and acceleration of one or more bodies, and the contact and noncontact forces acting on one or more bodies	K	Understanding Applying Analyzing			
			Newton's Laws of motion in contexts such as, but not limited to, ropes and pulleys, the design of mobile sculptures, transport of loads		Newton's Laws of motion in contexts such as, but not limited to, ropes and pulleys, the design of mobile sculptures, transport of loads		Choolotanding			

on conveyor belts, force

needed to move stalled

safe driving speeds on

banked curved roads

product of vectors

Κ

vehicles, determination of

Calculate the dot or scalar

K Understanding

Applying

Online distance

Learning (ODL)

16, Tandang Sora Ave., Sangandaan, Novaliches, Quezon City Tel. No. (02) 938-7782 / (02) 938-7789 Telefax No. (02) 939-7229 Email: <u>info@lantingcollege.edu.ph</u> Website: <u>www.lantingcollege.edu.ph</u> <u>www.lantingcollege.edu.ph</u>

What to	Teach?		Why Tea	ich?			Why Assess	?	What to	Teach?
			Lea	rning Cor	npetencies		Highest Thinking Skill	to Assess	Highest Enabling developing the Hig to As	Strategy to Use in hest Thinking Skill ssess
Content	Content Standards	Most Essential Topics	Complete	K U D	Most Essential	K U D	RBT Level Flexible Assessment Activities (FAA) Performance Checks	Performance Checks	Enabling General Strategy	Flexible Learning Strategies (FLS)

0 Mark dana bu	0 Mark dana hii -		r		1	Analyzian		(Aaynahranaya and	T
2. WORK done by	2. WORK done by a					Anaiyzing	4	(Asynchronous and Synchronous)	
a torce		Determine the work done by	к	Determine the work done by	К	Remembering		Synchronous)	
3. Work-energy	3. Work-energy	a force (not necessarily		a force (not necessarily		Understanding			
relation	relation	constant) acting on a system		constant) acting on a system					
4. Kinetic energy	4. Kinetic energy	Define work as a scalar or	K	Define work as a scalar or	K	Remembering			
5. Power	5. Power	dot product of force and		dot product of force and		Understanding			
6. Conservative	6. Conservative	displacement		displacement					
and	and	Interpret the work done by a	U	Interpret the work done by a	U	Understanding			
nonconservative	nonconservative	force in one-dimension as an		force in one-dimension as an		_			
forces	forces	area under a Force vs.		area under a Force vs.					
7. Gravitational	Gravitational	Position curve		Position curve					
potential energy	potential energy	Relate the gravitational	U	Relate the gravitational	U	Understanding			
8. Elastic	8. Elastic potential	potential energy of a system		potential energy of a system		Applying			
potential energy	energy	or object to the configuration		or object to the configuration					
10. Energy	10. Energy	of the system		of the system					
Conservation,	Conservation,	Relate the elastic potential	U	Relate the elastic potential	U	Understanding			
Work, and Power	Work, and Power	energy of a system or object		energy of a system or object		5			
Problems	Problems	to the configuration of the		to the configuration of the					
		system		system					
		Explain the properties and	U	Explain the properties and	U				
		the effects of conservative	-	the effects of conservative	•				
		forces		forces					
		Lise potential energy	11	Lise notential energy	11		-		
		diagrams to infer force:	0	diagrams to infer force:	0				
		stable unstable and neutral		stable unstable and poutral					
		oguilibria: and turning points		oguilibria: and turning points					
		Calvo problems involving		Salva problems involving			-		
					U				
		work, energy, and power in		work, energy, and power in	1				

16, Tandang Sora Ave., Sangandaan, Novaliches, Quezon City Tel. No. (02) 938-7782 / (02) 938-7789 Telefax No. (02) 939-7229 Email: info@lantingcollege.edu.ph Website: www.lantingcollege.edu.ph www.lantingcollege.edu.ph

What to	Teach?		Why Tea	ch?			Why Assess	?	What to Teach?	
			Lear	ning Co	ompetencies		Highest Thinking Skill	to Assess	Highest Enabling developing the Hig to As	Strategy to Use in hest Thinking Skill sess
Content	Content Standards	Most Essential Topics	Complete	K U D	Most Essential	K U D	RBT Level Flexible Assessment Activities (FAA) Performance Checks	Performance Checks	Enabling General Strategy	Flexible Learning Strategies (FLS)

					contexts such as, but not limited to, bungee jumping, design of roller-coasters, number of people required to build structures such as the Great Pyramids and the rice terraces; power and energy requirements of human activities such as sleeping vs. sitting vs. standing, running vs. walking. (Conversion of joules to calorize should be		contexts such as, but not limited to, bungee jumping, design of roller-coasters, number of people required to build structures such as the Great Pyramids and the rice terraces; power and energy requirements of human activities such as sleeping vs. sitting vs. standing, running vs. walking. (Conversion of joules to calorize should be					
					emphasized at this point.)		emphasized at this point.)					
Center of Mass, Momentum,	1.	Center of Mass	1.	Center of Mass	Differentiate center of mass and geometric center	К	Differentiate center of mass and geometric center	K]	Online distance Learning (ODL)	
Impulse, and	2.	Momentum	2.	Momentum	Relate the motion of center	Κ	Relate the motion of center	Κ			(Asynchronous and	
Collisions	3.	Impulse	3.	Impulse	of mass of a system to the		of mass of a system to the				Synchronous)	
	4.	Impulse-	4.	Impulse-	momentum and net external		momentum and net external					
		rolation		rolation	Torce acting on the system	V	Torce acting on the system	V				
	5		5		impulse force and time of	ĸ	impulse, force, and time of	Ň				
	5.	conservation	J.	conservation	contact in a system		contact in a system					
		of		of momentum	Compare and contrast		Compare and contrast	11	Analyzing			
		momentum	6.	Collisions	elastic and inelastic	0	elastic and inelastic	0				
	6.	Collisions			collisions		collisions					

16, Tandang Sora Ave., Sangandaan, Novaliches, Quezon City Tel. No. (02) 938-7782 / (02) 938-7789 Telefax No. (02) 939-7229 Email: <u>info@lantingcollege.edu.ph</u> Website: <u>www.lantingcollege.edu.ph</u> <u>www.lantingcollege.edu.ph</u>

What to	o Teach?		Why Te	each?			Why Assess	?	What to	Teach?
			Le	arning Co	mpetencies		Highest Thinking Skill	to Assess	Highest Enabling Strategy to Use in developing the Highest Thinking Skill to Assess	
Content	Content Standards	Most Essential Topics	Complete	K U D	Most Essential	K U D	RBT Level Flexible Assessment Activities (FAA) Performance Checks	Performance Checks	Enabling General Strategy	Flexible Learning Strategies (FLS)

	7. Center of mass, impulse.	7. Center of mass, impulse,	Apply the concept of restitution coefficient in collisions	U	Apply the concept of restitution coefficient in collisions	U			
	momentum, and collision problems 8. Energy momentum experiments	momentum, and collision problems 8. Energy momentum experiments	Solve problems involving center of mass, impulse, and momentum in contexts such as, but not limited to, rocket motion, vehicle collisions, and ping-pong. (Emphasize also the concept of whiplash and the sliding, rolling, and mechanical deformations in vehicle collisions.)	K	Solve problems involving center of mass, impulse, and momentum in contexts such as, but not limited to, rocket motion, vehicle collisions, and ping-pong. (Emphasize also the concept of whiplash and the sliding, rolling, and mechanical deformations in vehicle collisions.)	К	Analyzing		
Rotational equilibrium and rotational dynamics	 Moment of inertia Angular position, angular velocity, angular 	 Moment of inertia Angular position, angular velocity, angular 	1. Calculate the moment of inertia about a given axis of single-object and multiple- object systems (1 lecture with exercises)	U	1. Calculate the moment of inertia about a given axis of single-object and multiple- object systems (1 lecture with exercises)	U	Understanding Applying Analyzing	Online distance Learning (ODL) (Asynchronous and Synchronous)	
	acceleration 3. Torque 4. Torque-angular acceleration relation	acceleration 3. Torque 4. Torque-angular acceleration relation	 Calculate magnitude and direction of torque using the definition of torque as a cross product Describe rotational 	U K	 Calculate magnitude and direction of torque using the definition of torque as a cross product Describe rotational 	U K	Understanding Applying Analyzing Understanding		
	5. Static equilibrium 6. Rotational kinematics	5. Static equilibrium 6. Rotational kinematics	quantities using vectors 5. Determine whether a system is in static equilibrium or not	U	 quantities using vectors 5. Determine whether a system is in static equilibrium or not 	U			

16, Tandang Sora Ave., Sangandaan, Novaliches, Quezon City Tel. No. (02) 938-7782 / (02) 938-7789 Telefax No. (02) 939-7229 Email: <u>info@lantingcollege.edu.ph</u> Website: <u>www.lantingcollege.edu.ph</u> <u>www.lantingcollege.edu.ph</u>

What to	Teach?		Why Tea	ach?			Why Assess	?	What to	Teach?		
			Learning Competencies				Highest Thinking Skil	I to Assess	Highest Enabling Strategy to Use in developing the Highest Thinking Skill to Assess			
Content	Content Standards	Most Essential Topics	Complete	K U	Most Essential	K U	RBT Level Flexible Assessment Activities (FAA)	Performance	Highest Enabling developing the H to A Enabling General Strategy	Flexible Learning		
				D		D	Performance Checks	Ollecks	Strategy	Strategies (i LO)		
	•									•		
	7. Work done by	7. Work done by a	6. Apply the rotational kinematic relations for	U	6. Apply the rotational kinematic relations for	U	Understanding					

	a torque 8. Rotational kinetic energy	torque 8. Rotational kinetic energy	kinematic relations for systems with constant angular accelerations		kinematic relations for systems with constant angular accelerations		Applying		
	9. Angular momentum 10. Static equilibrium experiments 11. Rotational motion problems	9. Angular momentum 10. Static equilibrium experiments 11. Rotational motion problems	8. Solve static equilibrium problems in contexts such as, but not limited to, see- saws, mobiles, cable-hinge- strut system, leaning ladders, and weighing a heavy suitcase using a small bathroom scale	D	8. Solve static equilibrium problems in contexts such as, but not limited to, see- saws, mobiles, cable-hinge- strut system, leaning ladders, and weighing a heavy suitcase using a small bathroom scale	D	Understanding Applying		
			9. Determine angular momentum of different systems	U	9. Determine angular momentum of different systems	U			
			10. Apply the torque-angular momentum relation	U	10. Apply the torque-angular momentum relation	U	Understanding Applying Analyzing		
Gravity	1. Newton's Law of Universal Gravitation 2. Gravitational field	1. Newton's Law of Universal Gravitation 2. Gravitational field	1. Use Newton's law of gravitation to infer gravitational force, weight, and acceleration due to gravity	U	1. Use Newton's law of gravitation to infer gravitational force, weight, and acceleration due to gravity	U		Online distance Learning (ODL) (Asynchronous and Synchronous)	
	 Gravitational potential energy Orbits 	3. Gravitational potential energy	3. Discuss the physical significance of gravitational field	U	3. Discuss the physical significance of gravitational field	U	Understanding Applying Analyzing		

16, Tandang Sora Ave., Sangandaan, Novaliches, Quezon City Tel. No. (02) 938-7782 / (02) 938-7789 Telefax No. (02) 939-7229 Email: info@lantingcollege.edu.ph Website: www.lantingcollege.edu.ph www.lantingcollege.edu.ph

What to	Teach?		Why Teach	ı?			Why Assess	What to Teach?				
			Learni	ing Co	mpetencies		Highest Thinking Skill	to Assess	Highest Enabling Strategy to Use in developing the Highest Thinking Skill to Assess			
Content	Content Standards	Most Essential Topics	Complete	K U D	Most Essential	K U D	RBT Level Flexible Assessment Activities (FAA) Performance Checks	Performance Checks	Enabling General Strategy	Flexible Learning Strategies (FLS)		

	 Kepler's laws of planetary 		4. Apply the concept of gravitational potential energy	U		U	Understanding			
	motion		in physics problems							
			5. Calculate quantities	U		U	Understanding			
			related to planetary or				Applying			
			satellite motion				Analyzing			
			7. For circular orbits, relate	U		U	Remembering			
			Kepler's third law of				Understanding			
			planetary motion to Newton's							
			law of gravitation and							
			centripetal acceleration							
Periodic Motion	1. Periodic Motion	1. Periodic Motion	1. Relate the amplitude,	Κ	1. Relate the amplitude,	Κ	Remembering		Online distance	
Mechanical Waves	2. Simple harmonic	2. Simple harmonic	frequency, angular	U	frequency, angular	U	Understanding		Learning (ODL)	
and Sound	motion: spring-	motion: spring-mass	frequency, period,		frequency, period,		ő		(Asynchronous and	
	mass system,	system, simple	displacement, velocity, and		displacement, velocity, and				Synchronous)	
	simple pendulum,	pendulum, physical	acceleration of oscillating		acceleration of oscillating					
	physical pendulum	pendulum	systems		systems					
			2. Recognize the necessary	Κ	2. Recognize the necessary	Κ	Understanding			
	3. Damped and		conditions for an object to	U	conditions for an object to	U	-			
	Driven oscillation		undergo simple harmonic		undergo simple harmonic					
	4. Periodic Motion	1. Sound	motion		motion					
	experiment	2. Wave Intensity	4. Calculate the period and	Κ	4. Calculate the period and	Κ	Understanding			
	5. Mechanical	3. Interference and	the frequency of spring	U	the frequency of spring	U	Applying			
	waves	beats	mass, simple pendulum, and		mass, simple pendulum, and					
	1 Sound	5 Doppler effect	physical pendulum		physical pendulum					
	2. Wave Intensity		5. Differentiate	Κ		Κ	Understanding	1		
	3. Interference and		underdamped, overdamped,	U		U	-			
	beats		and critically damped motion							

16, Tandang Sora Ave., Sangandaan, Novaliches, Quezon City Tel. No. (02) 938-7782 / (02) 938-7789 Telefax No. (02) 939-7229 Email: info@lantingcollege.edu.ph Website: www.lantingcollege.edu.ph www.lantingcollege.edu.ph

What to	Teach?		Why Tea	ch?			Why Assess	?	What to	What to Teach?			
			Lea	rning Co	mpetencies		Highest Thinking Skill	to Assess	Highest Enabling developing the Hig to As	What to Teach?nest Enabling Strategy to Use inloping the Highest Thinking Skillto Assessling GeneralStrategyFlexible LearningStrategies (FLS)			
Content	Content Standards	Most Essential Topics	Complete	K U D	Most Essential	K U D	RBT Level Flexible Assessment Activities (FAA) Performance Checks	Performance Checks	Enabling General Strategy	Flexible Learning Strategies (FLS)			

							-	
	4. Standing waves	8. Define mechanical wave,		8. Define mechanical wave,				
	5. Doppler effect	longitudinal wave, transverse		longitudinal wave, transverse				
		wave, periodic wave, and		wave, periodic wave, and				
		sinusoidal wave		sinusoidal wave				
		9. From a given sinusoidal	Κ	9. From a given sinusoidal	Κ			
		wave function infer the	U	wave function infer the	U			
		(speed, wavelength,		(speed, wavelength,				
		frequency, period, direction,		frequency, period, direction,				
		and wave number		and wave number				
		1. Apply the inverse-square	Κ	1. Apply the inverse-square	Κ			
		relation between the		relation between the				
		intensity of waves and the		intensity of waves and the				
		distance from the source		distance from the source				
		2. Describe gualitatively and	Κ	2. Describe qualitatively and	Κ			
		guantitatively the		quantitatively the				
		superposition of waves		superposition of waves				
		3. Apply the condition for	U	3. Apply the condition for	U			
		standing waves on a string		standing waves on a string				
		4. Relate the frequency		4. Relate the frequency				
		(source dependent) and		(source dependent) and				
		wavelength of sound with the		wavelength of sound with the				
		motion of the source and the		motion of the source and the				
		listener		listener				
Fluid Mechanics	1. Specific gravity	1. Relate density, specific	Κ	1. Relate density, specific	К	Analyzing	Online distance	1
	2. Pressure	gravity, mass, and volume to		gravity, mass, and volume to			Learning (ODL)	
	3. Pressure vs.	each other		each other			(Asynchronous and	
	Depth Relation	2. Relate pressure to area	Κ	2. Relate pressure to area	К		Synchronous)	
	,	and force		and force				

16, Tandang Sora Ave., Sangandaan, Novaliches, Quezon City Tel. No. (02) 938-7782 / (02) 938-7789 Telefax No. (02) 939-7229 Email: info@lantingcollege.edu.ph Website: www.lantingcollege.edu.ph www.lantingcollege.edu.ph

FLEXIBLE INSTRUCTION DELIVERY PLAN (FIDP)

What to	Teach?		Why Tea	ich?			Why Assess	?	What to	Teach?			
			Lea	rning Cor	npetencies		Highest Thinking Skill	to Assess	Highest Enabling developing the Hig to As	What to Teach? Highest Enabling Strategy to Use in eveloping the Highest Thinking Skill to Assess Inabling General Elexible Learning			
Content	Content Standards	Most Essential Topics	Complete	K U D	Most Essential	K U D	RBT Level Flexible Assessment Activities (FAA) Performance Checks	Performance Checks	Enabling General Strategy	Flexible Learning Strategies (FLS)			

4. Pascal's principle	3. Relate pressure to fluid density and depth	К	3. Relate pressure to fluid density and depth	K	Analyzing		
5. Buoyancy and Archimedes' Principle 6. Continuity	4. Apply Pascal's principle in analyzing fluids in various systems	U	4. Apply Pascal's principle in analyzing fluids in various systems	U	Understanding Applying Analyzing		
7. Bernoulli's principle							

Prepared by:

ADONIS F, CERBITO, MAEd Senior Teacher V

Checked and Approved:

MS. MARIA NONA S. GRAFANE Principal, BED-SHS